You are given an array `nums`

that consists of non-negative integers. Let us define `rev(x)`

as the reverse of the non-negative integer `x`

. For example, `rev(123) = 321`

, and `rev(120) = 21`

. A pair of indices `(i, j)`

is **nice** if it satisfies all of the following conditions:

`0 <= i < j < nums.length`

`nums[i] + rev(nums[j]) == nums[j] + rev(nums[i])`

Return *the number of nice pairs of indices*. Since that number can be too large, return it **modulo** `10`

.^{9} + 7

**Example 1:**

Input:nums = [42,11,1,97]Output:2Explanation:The two pairs are: - (0,3) : 42 + rev(97) = 42 + 79 = 121, 97 + rev(42) = 97 + 24 = 121. - (1,2) : 11 + rev(1) = 11 + 1 = 12, 1 + rev(11) = 1 + 11 = 12.

**Example 2:**

Input:nums = [13,10,35,24,76]Output:4

**Constraints:**

`1 <= nums.length <= 10`

^{5}`0 <= nums[i] <= 10`

^{9}

public class Solution {
public int CountNicePairs(int[] nums) {
}
}