# GeetCode Hub

You are given a 2D integer array `groups` of length `n`. You are also given an integer array `nums`.

You are asked if you can choose `n` disjoint subarrays from the array `nums` such that the `ith` subarray is equal to `groups[i]` (0-indexed), and if `i > 0`, the `(i-1)th` subarray appears before the `ith` subarray in `nums` (i.e. the subarrays must be in the same order as `groups`).

Return `true` if you can do this task, and `false` otherwise.

Note that the subarrays are disjoint if and only if there is no index `k` such that `nums[k]` belongs to more than one subarray. A subarray is a contiguous sequence of elements within an array.

Example 1:

```Input: groups = [[1,-1,-1],[3,-2,0]], nums = [1,-1,0,1,-1,-1,3,-2,0]
Output: true
Explanation: You can choose the 0th subarray as [1,-1,0,1,-1,-1,3,-2,0] and the 1st one as [1,-1,0,1,-1,-1,3,-2,0].
These subarrays are disjoint as they share no common nums[k] element.
```

Example 2:

```Input: groups = [[10,-2],[1,2,3,4]], nums = [1,2,3,4,10,-2]
Output: false
Explanation: Note that choosing the subarrays [1,2,3,4,10,-2] and [1,2,3,4,10,-2] is incorrect because they are not in the same order as in groups.
[10,-2] must come before [1,2,3,4].
```

Example 3:

```Input: groups = [[1,2,3],[3,4]], nums = [7,7,1,2,3,4,7,7]
Output: false
Explanation: Note that choosing the subarrays [7,7,1,2,3,4,7,7] and [7,7,1,2,3,4,7,7] is invalid because they are not disjoint.
They share a common elements nums (0-indexed).
```

Constraints:

• `groups.length == n`
• `1 <= n <= 103`
• `1 <= groups[i].length, sum(groups[i].length) <= 103`
• `1 <= nums.length <= 103`
• `-107 <= groups[i][j], nums[k] <= 107`

class Solution { public boolean canChoose(int[][] groups, int[] nums) { } }