Given an array of positive integers `nums`

, return the *maximum possible sum of an ascending subarray in *

`nums`

.A subarray is defined as a contiguous sequence of numbers in an array.

A subarray `[nums`

is _{l}, nums_{l+1}, ..., nums_{r-1}, nums_{r}]**ascending** if for all `i`

where `l <= i < r`

, `nums`

. Note that a subarray of size _{i } < nums_{i+1}`1`

is **ascending**.

**Example 1:**

Input:nums = [10,20,30,5,10,50]Output:65Explanation:[5,10,50] is the ascending subarray with the maximum sum of 65.

**Example 2:**

Input:nums = [10,20,30,40,50]Output:150Explanation:[10,20,30,40,50] is the ascending subarray with the maximum sum of 150.

**Example 3:**

Input:nums = [12,17,15,13,10,11,12]Output:33Explanation:[10,11,12] is the ascending subarray with the maximum sum of 33.

**Example 4:**

Input:nums = [100,10,1]Output:100

**Constraints:**

`1 <= nums.length <= 100`

`1 <= nums[i] <= 100`

class Solution {
public int maxAscendingSum(int[] nums) {
}
}