GeetCode Hub

There are n people and 40 types of hats labeled from 1 to 40.

Given a list of list of integers hats, where hats[i] is a list of all hats preferred by the i-th person.

Return the number of ways that the n people wear different hats to each other.

Since the answer may be too large, return it modulo 10^9 + 7.

Example 1:

Input: hats = [[3,4],[4,5],]
Output: 1
Explanation: There is only one way to choose hats given the conditions.
First person choose hat 3, Second person choose hat 4 and last one hat 5.

Example 2:

Input: hats = [[3,5,1],[3,5]]
Output: 4
Explanation: There are 4 ways to choose hats
(3,5), (5,3), (1,3) and (1,5)

Example 3:

Input: hats = [[1,2,3,4],[1,2,3,4],[1,2,3,4],[1,2,3,4]]
Output: 24
Explanation: Each person can choose hats labeled from 1 to 4.
Number of Permutations of (1,2,3,4) = 24.

Example 4:

Input: hats = [[1,2,3],[2,3,5,6],[1,3,7,9],[1,8,9],[2,5,7]]
Output: 111

Constraints:

• n == hats.length
• 1 <= n <= 10
• 1 <= hats[i].length <= 40
• 1 <= hats[i][j] <= 40
• hats[i] contains a list of unique integers.

class Solution { public int numberWays(List<List<Integer>> hats) { } }