You are given a large sample of integers in the range `[0, 255]`

. Since the sample is so large, it is represented by an array `count`

where `count[k]`

is the **number of times** that `k`

appears in the sample.

Calculate the following statistics:

`minimum`

: The minimum element in the sample.`maximum`

: The maximum element in the sample.`mean`

: The average of the sample, calculated as the total sum of all elements divided by the total number of elements.`median`

:- If the sample has an odd number of elements, then the
`median`

is the middle element once the sample is sorted. - If the sample has an even number of elements, then the
`median`

is the average of the two middle elements once the sample is sorted.

- If the sample has an odd number of elements, then the
`mode`

: The number that appears the most in the sample. It is guaranteed to be**unique**.

Return *the statistics of the sample as an array of floating-point numbers *`[minimum, maximum, mean, median, mode]`

*. Answers within *`10`

^{-5}* of the actual answer will be accepted.*

**Example 1:**

Input:count = [0,1,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]Output:[1.00000,3.00000,2.37500,2.50000,3.00000]Explanation:The sample represented by count is [1,2,2,2,3,3,3,3]. The minimum and maximum are 1 and 3 respectively. The mean is (1+2+2+2+3+3+3+3) / 8 = 19 / 8 = 2.375. Since the size of the sample is even, the median is the average of the two middle elements 2 and 3, which is 2.5. The mode is 3 as it appears the most in the sample.

**Example 2:**

Input:count = [0,4,3,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]Output:[1.00000,4.00000,2.18182,2.00000,1.00000]Explanation:The sample represented by count is [1,1,1,1,2,2,2,3,3,4,4]. The minimum and maximum are 1 and 4 respectively. The mean is (1+1+1+1+2+2+2+3+3+4+4) / 11 = 24 / 11 = 2.18181818... (for display purposes, the output shows the rounded number 2.18182). Since the size of the sample is odd, the median is the middle element 2. The mode is 1 as it appears the most in the sample.

**Constraints:**

`count.length == 256`

`0 <= count[i] <= 10`

^{9}`1 <= sum(count) <= 10`

^{9}- The mode of the sample that
`count`

represents is**unique**.

class Solution {
public double[] sampleStats(int[] count) {
}
}